UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites
نویسندگان
چکیده
Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.
منابع مشابه
Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملAnalysis of Milling Process Parameters and their Influence on Glass Fiber Reinforced Polymer Composites (RESEARCH NOTE)
Milling of fiber reinforced polymer composites is of great importance for integrated composites with other mating parts. Improper selection of cutting process parameters, excessive cutting forces and other machining conditions would result in rejection of components. Therefore, machining conditions are optimized to reduce the machining forces and damages. This work reports practical experiments...
متن کاملThree-dimensional printing of continuous-fiber composites by in-nozzle impregnation
We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fi...
متن کامل3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which all...
متن کاملMULTISCALE FIBER REINFORCED COMPOSITES USING A CARBON NANOFIBER/EPOXY NANOPHASED MATRIX: PROCESSING, PROPERTIES, AND THERMOMECHANICAL BEHAVIOR by KEITH JAMAHL GREEN DERRICK R. DEAN, COMMITTEE CHAIR
Fiber-reinforced polymer composites (FRCs) have shown great promise as high strength structural materials due to their high stiffness to weight ratio and their ease in processing. They have found extensive use in aerospace, automotive, construction, and recreational equipment material applications. Research in polymer-based nanocomposites (PNCs) has shown explosive growth in the past decade wit...
متن کامل